Guidance for Condition Checking
Software-based Artworks

Tom Ensom

Time-based Media Conservation, Tate

Document Last Updated: 12 March 2025
Document Version: 01.00
Document Licence: CC BY-SA 4.0

Contents
Document BaCKgrOUNGooiii ittt e e e et e e e e e e e eeeaens 1
] 1o o 18 o (o] o USSP 2
=T 0T = 111] o S 2
4 Condition Checking and Documentation Promptscoooiiiiiiiiiiniiee e 3
4.1 Guidance for Documenting COMPULETScooiiiiiiiiiieee e 4
4.1.1 Documenting WIiNndows COMPULETScoccuiiiiiiiie e 4
4.1.2 Documenting Mac COMPULETS.........ueiiiiiei i 6
4.1.3 Documenting LINUX COMPUIETSceoiiiiiiiiiiiiiiieiee et e e e e 6

1 Document Background

This document is a guide to the condition checking and documentation of software-based
artworks, intended primarily for conservators of time-based media artworks. Condition
checking for software-based art involves examining the artwork’s components and assessing
their role, condition and significance. For software-based art condition is considered not only
in terms of physical degradation but also the longevity of the technologies in relation to
obsolescence. Information gained during condition checking is used to develop strategies for
the artwork’s long-term care. This information is recorded in and supported by documentation,
transmitting knowledge that will support future conservation work and providing a record of
the material history of the artwork. This guide was created as part of Tate’'s Software-based
Art Preservation Project, serving as an introduction to the topic for other conservation staff
and as a foundation for formalising best practices within the team.

This document was intended for internal use at Tate and is being shared more widely as a
standalone document. As it was created primarily for internal use by Tate’s Time-based Media
Conservation team, it contains references to other internal documentation which may not be
clear to those not working within the institution. This PDF represents a snapshot of a live page

https://creativecommons.org/licenses/by-sa/4.0/

on Tate’s Time-based Media Conservation Wiki, captured on the date noted at the top of this
document. The wiki page will continue to evolve alongside other internal workflows, policies
and procedures, while this document will remain a static project output.

2 Introduction

This document provides guidance for condition checking and documenting software-based
artworks (i.e. artworks which employ software as their primary artistic medium). Software-
based art is highly variable in its constituents and different artworks can demand very different
approaches — this page highlights some common considerations. In order to address the
needs of a specific software-based artwork, you may need to work closely with the artist, the
artists team and/or a technical specialist (e.g. programmer or engineer) during this process.

The purpose of the condition checking and documentation process is multi-faceted, and goals
might include:

e Ensuring we have gathered the components needed to support the artwork's life in the
collection. This includes those needed to run the original software (e.g. operating
systems, computer hardware) and support future treatments (e.g. spare electronic
components, source code).

e Understanding the role of the components of the artwork and how they fit together to
support its display.

e Gathering and creating documentation that will support the above goals and the
artworks life in the collection.

¢ Understanding the condition of the artwork and identifying treatment requirements.

For example:

o Have any components failed?
o Are any components obsolete?
o |s atreatment required at point of acquisition or prior to display?

3 Preparation

Before you can begin condition checking, you will need to identify and gather together the
components of the artwork. While these are often supplied by the artist or gallery involved,
sometimes they may need to be sourced by Tate, typically at the point of acquisition or in
preparation for a display. Components associated with software-based artworks are many and
varied, but may include:

e Installer, application or binaries for any custom software components (i.e. the
executable software which is run when the work is displayed).

e Source materials for any custom software components (e.g. source code, project
files, assets).

e Computer system capable of running the software.

¢ Any additional hardware required in addition to the computer system (e.g. display
equipment, peripherals, interfaces).

e Installers, applications or binaries for any ‘off-the-shelf’ software required to run other
components.

You will then need both the time and space to set these components up and test them. If you
are inspecting or removing internal components with exposed circuit boards, you will need to
set up a workspace which mitigates possible damage through electro-static discharge (e.g.
through use of an anti-static mat and wristband combination).

4 Condition Checking and Documentation Prompts

Condition checking and documentation processes will vary depending on the type of system
and software involved. If you are not familiar with the technologies used, consult someone in
the team who is or consider working with an external specialist. Below are some prompts
describing some common steps:

Disk imaging. For any computers or optical media acquired, assess the storage media
contained and create suitable disk images (see Disk Imaging). The idea of this process
is to create a bit-for-bit backup of the relevant data contained on storage media. It is
typically best to do this before powering a computer on for the first time, ensuring that
data is safely backed up before risks of alteration are introduced during booting and
subsequent use.
Check physical condition of computers inside and outside. Dust build-up should be
removed using an air duster and cleaning tools, taking care not to damage any
components. Corrosion, failed components (e.g. capacitors) and other potential
electrical problems should also be checked for and repairs planned as needed.
Testing the software and hardware. Boot the computer and test that the software is
functioning correctly, ideally using reference materials (e.g. video capture) or with a
representative of the artist present. If no hardware has been supplied, you will need to
source and configure suitable hardware based on existing information (ideally using a
system requirements specification supplied by the artist).
Disambiguating versions of software. If there are multiple copies of software
components, it is important to understand how and why they differ, so that an informed
decision can be made about which to retain. Even if versions are no longer used to
display the work, you may want to extract these and create components for them, as
this helps support an understanding of the artwork's technical history. You can identify
differences through examination, checksum comparison and diffing.
Creating and gathering documentation according to the needs of the artwork.
Documentation of software-based art entails use of templates regularly used for other
artwork types (e.g. display spec, production diagram) but requirements typically extend
beyond what these templates support. The Software-based Art Conservation Report
template can be used to guide documentation work or you can use your own approach.
Ideally, documentation should provide an overview of the hardware and software used
to display the artwork (currently and historically), how these components were created
and how they function. Gathering and/or creating more detailed documentation of
components provides valuable insights in understanding the artwork and supporting
future treatments. Common component types, with examples of useful documents, are
listed below:
o Hardware component documentation:
= Computers: maintenance manuals; description of hardware

specification, installed operating system and installed software. See

Documenting Computer Hardware section for information about specific

tools.

https://en.wikipedia.org/wiki/Diff

= Peripheral hardware (e.g. input/output devices, display equipment):
maintenance = manuals; relevant information about their
hardware/software specification.

= Custom hardware: circuit diagrams; bill of materials (i.e. a list of
components used); any other documentation that might be needed to
recreate the hardware from scratch.

o Software component documentation:

= Custom software: description of dependency relationships; functional
description (i.e. what the software does in plain language); in-line
documentation of code (e.g. comments embedded in code).

= Complex folder structures (e.g. project files): file/folder structure
listing (e.g. “tree” or Brunnhilde output); list of file formats contained
(e.g. DROID output saved as a CSV file in the artwork folder); use to
generate a more detailed collection of documentation.

= Off-the-shelf software (e.g. drivers, libraries): third-party manuals and
technical specification information; description of dependency
relationships (if relevant).

= Video and photographic documentation of the artwork as a whole
and/or specific components. Video documentation of dynamic elements
via camera or screen capture can be particularly useful where this does
not already exist, as it forms a reference for how the work behaves. It
may be possible to request this form of documentation be produced by
Tate Photography (this was done in the case of e.g. Donald Rodney's
Psalms).

e Complete dedicated TMS fields using information gained in prior steps (see TMS
Software-based Artwork Components).

4.1 Guidance for Documenting Computers

4.1.1 Documenting Windows Computers

41.1.1 Hardware Information
A tool such as Microsoft's System Information (part of Windows by default) and the freeware

HWINFO can be used to gather extensive information about Windows-based hardware and
software environment. Outputs should be saved to file and stored in the artwork folder.

4.1.1.2 Operating System Version

Identify Windows version (including build number) by running the following program from the
command-line:

ver

Identify Windows edition (e.g. Home, Professional, Enterprise) currently activated by running
the following script from the command-line:

https://github.com/tw4l/brunnhilde
http://www.nationalarchives.gov.uk/information-management/manage-information/preserving-digital-records/droid/
https://www.hwinfo.com/

slmgr

4113

.vbs -dli

Installed Software

Generate a text file listing installed programs and their version numbers in Windows 10:

1.
2.

wmic

3.

Open Command Prompt (be sure to run as Administrator)
Enter the following command:

Enter the following command, replacing the .txt. file name:

/output:C:\Installlist.txt product get name,version

4114

Identifying Software Dependencies

Software can have dependency relationships with other software — it depends on that other
software in order to operate correctly or at all. For software components of software-based
artworks, identifying these is useful as it helps us manage these dependencies during the life
of the artwork. Some tools which can help reveal further information about software and
hardware dependencies are listed below:

Task Manager is Windows standard and built-in tool for monitoring background
activity. This can reveal what programs and services are currently running on a
computer, which are set to run on system startup, and how the computer's hardware
components are being used.

CFF Explorer is a binary analysis tool, which can be used to retrieve metadata and
dependency information from Windows Portable Executable (.exe) files. Dependency
information gained cannot be totally relied on, as other executable files may be
executed at runtime.

DriverView is a system analysis tool which lists the (.sys) drivers currently loaded by
Windows. This can be particularly useful in identifying non-Windows drivers which
might have been installed.

Sysinternals Process Monitor and x64dbgq are process analysis tools which can be
used to identify libraries and other resources being accessed by a software program.
This can be very useful in identifying how the software program is interacting with its
environment e.g. libraries accessed at runtime.

https://ntcore.com/?page_id=388
https://www.nirsoft.net/utils/driverview.html
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://x64dbg.com/

4.1.2 Documenting Mac Computers

4.1.2.1 System Information

The 'About This Mac' and 'System Information' tool in MacOS can be used to gather system
information including hardware and software environment information.

1. Click the Apple icon at the top left corner of the screen. Select "About This Mac" from
the dropdown list. Some information, such as GPU, can be found on the Overview
screen that opens.

2. The model of the motherboard can be found by copying the serial number from the
Overview screen and pasting it into Apple's check coverage tool or cross-referencing
the model number of the Mac with data on everymac.com.

3. Select "System Report" open the System Information tool, where you can find more
detailed hardware information. System Information output can be saved to a file by
navigating to File -> Save.

4.1.2.2 System Profiler

As of MacOS 10.14 (Mojave), System Information only outputs in an XML-based .spx format
which can be opened on other Macs but is hard to read on other platforms. An alternative is
to use a command-line tool called System Profiler which outputs the same information but can
be saved as plain text. Call it by typing:

system profiler

Send the output to a plain text file using:

system profiler > output.txt

4.1.3 Documenting Linux Computers

Note that this guidance is for Debian-based distributions of Linux such as Ubuntu.

4.1.3.1 Hardware Information

Run the Ishw command to print hardware information:

lshw

http://checkcoverage.apple.com/
https://everymac.com/

Or for a concise version:

lshw -short

You can save this information to a file by adding a pipe to text onto the command:

lshw > lhsw output.txt

4.1.3.2 Installed Software

You can use apt to tell you which packages are installed:

apt list --installed

	1 Document Background
	2 Introduction
	3 Preparation
	4 Condition Checking and Documentation Prompts
	4.1 Guidance for Documenting Computers
	4.1.1 Documenting Windows Computers
	4.1.1.1 Hardware Information
	4.1.1.2 Operating System Version
	4.1.1.3 Installed Software
	4.1.1.4 Identifying Software Dependencies

	4.1.2 Documenting Mac Computers
	4.1.2.1 System Information
	4.1.2.2 System Profiler

	4.1.3 Documenting Linux Computers
	4.1.3.1 Hardware Information
	4.1.3.2 Installed Software

